Higher order implicit multistep methods for matrix differential equations
نویسندگان
چکیده
منابع مشابه
Renormalization methods for higher order differential equations
We adapt methodology of statistical mechanics and quantum field theory to approximate solutions to an arbitrary order ordinary differential equation boundary value problem by a second-order equation. In particular, we study equations involving the derivative of a double-well potential such as u− u3 or − u + 2u3. Using momentum (Fourier) space variables we average over short length scales and de...
متن کاملLinear Multistep Methods for Impulsive Differential Equations
This paper deals with the convergence and stability of linear multistep methods for impulsive differential equations. Numerical experiments demonstrate that both the mid-point rule and twostep BDFmethod are of order p 0when applied to impulsive differential equations. An improved linear multistep method is proposed. Convergence and stability conditions of the improved methods are given in the p...
متن کاملHigher order numerical methods for solving fractional differential equations
In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0 < α < 1. The order of convergence of the numerical method is ...
متن کاملImplicit-explicit multistep methods for quasilinear parabolic equations
Efficient combinations of implicit and explicit multistep methods for nonlinear parabolic equations were recently studied in [1]. In this note we present a refined analysis to allow more general nonlinearities. The abstract theory is applied to a quasilinear parabolic equation. Dedicated to Professor Vidar Thomée on the occasion of his 65 birthday, August 20, 1998
متن کاملImplicit-explicit multistep methods for nonlinear parabolic equations
Implicit–explicit multistep methods for nonlinear parabolic equations were recently analyzed in [2, 3, 1]. In these papers the linear operator of the equation is assumed time-independent, self-adjoint and positive definite; then, the linear part is discretized implicitly and the remaining part explicitly. Here we slightly relax the hypotheses on the linear operator by allowing part of it to be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1997
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(97)00005-9